skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Giancaspro, James W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many engineering faculty have been involved in some form of engineering education research (EER) during their professional career. This may range from a relatively superficial participation as a collaborator on a small departmental education initiative to a larger role in a leadership position as a principal investigator on a multi-institutional research grant. Regardless of the level of involvement, each engineering educator must evolve and invest substantial time to acquire a level of EER knowledge that is commensurate with their desired degree of participation. For those educators who are motivated to fully immerse themselves into a potentially rewarding EER program with the expectation of perpetuity, their evolution is not without barriers to entry and associated risks. The objective of this paper is to share the experiences of three established civil engineering faculty and their mentor who are within two years of receiving their first NSF grants to support EER projects at their home institution. Barriers to entry, challenges, and the lessons learned associated with their growth as emerging engineering education researchers are discussed. Strategies and resources are provided to assist new engineering educators to: lobby for institutional support, secure initial extramural funding, initiate collaborations, formulate short- and long-term career plans, build an Individual Development Plan (IDP), and develop an effective mentor-mentee relationship with an established researcher in the social sciences. It is hoped that this work will provide a holistic summary of their pathway, and to also caution and guide faculty who are contemplating either a partial or complete shift in their research paradigm to EER. 
    more » « less
  2. Abstract Mastering the concept of distributed forces is vital for students who are pursuing a major involving engineering mechanics. Misconceptions related to distributed forces that are typically acquired in introductory Physics courses should be corrected to increase student success in subsequent mechanics coursework. The goal of this study was to develop and assess a guided instructional activity using augmented reality (AR) technology to improve undergraduate engineering students' understanding of distributed forces. The AR app was accompanied by a complementary activity to guide and challenge students to model objects as beams with progressively increasing difficulty. The AR tool allowed students to (a) model a tabletop as a beam with multiple distributed forces, (b) visualize the free body diagram, and (c) compute the external support reactions. To assess the effectiveness of the activity, 43 students were allocated to control and treatment groups using an experimental nonequivalent groups preactivity/postactivity test design. Of the 43 students, 35 participated in their respective activity. Students in the control group collaborated on traditional problem‐solving, while those in the treatment group engaged in a guided activity using AR. Students' knowledge of distributed forces was measured using their scores on a 10‐item test instrument. Analysis of covariance was utilized to analyze postactivity test scores by controlling for the preactivity test scores. The treatment group demonstrated a significantly greater improvement in postactivity test scores than that of the control group. The measured effect size was 0.13, indicating that 13% of the total variance in the postactivity test scores can be attributed to the activity. Though the effect size was small, the results suggest that a guided AR activity can be more effective in improving student learning outcomes than traditional problem‐solving. 
    more » « less